
Generalised Algebraic Axiomatisations of
Contextual Categories

Corrected 6 April 2018
Extended 14 June 2018
Corrected 5 July 2018

John Cartmell

1 Introduction

The syntactic notion of generalised algebraic theory (GAT) and the equivalent algebraic notion of
contextual category were introduced in [1] and summarised in [2]. Whereas generally the objects
of categories can be taken to represent types, the objects of contextual categories can be taken to
represent what I have described as ‘types that vary’ but which subsequently have become know
as dependent types. Equally they can be taken to represent contexts: the algebra of contextual
categories is an algebra of context.
In [1] it was noted that the theory of contextual categories can be expressed as a generalised

algebraic theory by the axiomatisation of identity types on the morphism types of the category
(the identity types are required in order to phrase the pullback structure required by the definition
of contextual category); thus contextual categories are a generalised algebraic equivalent of GATs
and, in this sense, the machinary of GATs is able to self-describe; something which cannot be said
of Lawvere algebraic theories nor of many-sorted algebraic theories.

Voevodsky in [3] has shown a better way of representing contextual categories as generalised
algebraic; one which doesn’t necessitate the introdution of types other than those for objects and
morphisms. To do this he introduces an operator ‘s’ which cannonically maps any morphism to
a representative section; he shows that suitably axiomatised this implies the existence of pull-
backs. The purpose of this paper is to describe the generalised algebraic theory of contextual
categories which results from following this approach (note however that Voevodsky used the term
c-system in preference to contextual category) and then to introduce a further generalised algebraic
axiomatisation using operators ∗ and δ in place of Voevodsky’s operator s.
As a prelude to presenting the theory we first present two simpler but related theories (previously

presented in [1] and [2]): the GAT of categories and the GAT of trees.

2 Background Theories and Notations

2.1 The GAT of Categories

Symbol Introductory Rule
Ob Ob is a type
Hom x, y ∈ Ob ⊢Hom(x, y) is a type
○ x, y, z ∈ Ob, f ∈Hom(x, y), g ∈Hom(y, z) ⊢ ○(f, g) ∈Hom(x, z)
id x ∈ Ob ⊢ id(x) ∈Hom(x,x)

Axioms
○(id(x), f) = f , whenever x, y ∈ Ob, f ∈Hom(x, y)
○(f, id(y)) = f , whenever x, y ∈ Ob, f ∈Hom(x, y)
○(○(f, g), h) = ○(f, ○(g, h)), whenever w,x, y, z ∈ Ob, f ∈Hom(w,x), g ∈Hom(x, y), h ∈Hom(y, z)
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2.2 Trees of Concepts and the GAT of Trees

A contextual category has a tree of objects and we think of this tree as a tree of dependencies
among concepts.
Formally, a tree is any partially ordered set (S,<) such that for each t ∈ S, the set {s ∈ T ∶ s < t}

is well-ordered by the relation <. We wish to consider just trees (S,<) such that for each t ∈ s,
the set {s ∈ S ∶ s < t} is finite and such that there is a unique root to the tree i.e. a unique least
element. We call the elements of set S the nodes of the tree and for each node the cardinality
of the set {s ∈ S ∶ s < t} is said to be the height of the node t. We denote by Si, i ≥ 0, the set of
elements of S of height i. The set S0 is a singleton set containing the root of the tree.

Such trees as these we can equivalently describe as models of the generalised algebraic theory
given below table 1 in which the nodes of height n + 1 are represented as of a sort Sn+1that is
dependent on the sort of nodes of height n.

If A and B are nodes of a tree (S,<) then we shall write A◁B to mean that A < B in S and
that there does not exist x such that A < x < B. For every node B of tree S other than the root
node there exists a unique node A such that A◁B.

Table 1: The Generalised Algebraic Theory of Trees

Symbol Introductory Rule
S0 S0 is a type
S1 x0 ∈ S0 ⊢ S1(x0) is a type
S2 x0 ∈ S0, x1 ∈ S1(x0) ⊢ S2(x0, x1) is a type
⋮
Sn x0 ∈ S0, x1 ∈ S1(x0),⋯xn−1 ∈ Sn(x0, x1,⋯xn−2) ⊢ Sn(x0, x1,⋯xn−1) is a type
⋮
root root ∈ S0

Axioms:
x, y ∈ S0 ⊢ x = y

2.3 Schematic Notation

There is a shorthand that is convenient in the presentation of the GAT of trees and then sub-
sequently in the GAT of contextual categories. We use the shorthand x∈

n
S for the context x0 ∈

S0, x1 ∈ S1(x0),⋯xn ∈ Sn(x0, x1,⋯xn−1).

Using this shorthand, for any n ≥ 0 the sort Sn in the theory of trees is introduced as follows:

Symbol Introductory Rule
S0 S0 is a type
Sn+1, n ≥ 0 x∈

n
S ⊢ Sn+1(x) is a type

2.4 An Aside on Recursive Type Definitions

Using the shorthand, we are quite close to having a recursive definition of a single sort SR. Such
definitions are not possible in generalised algebraic theories but we can imagine a framework in
which it is possible to write:

Symbol Introductory Rule
S0 S0 is a type
SR x0 ∈ S0 ⊢ SR(x0) is a type
SR x ∈ SR ⊢ SR(x) is a type
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Such a definition could be represented algebraically in a suitably generalised notion of contextual
category (a comulti-contextual category?) these dependencies could be represented as follows:

1

S0

SR

This is not just an idle thought – in data modelling such a tree structure is represented in an
entity model diagram in which the injections into the coproduct S of S0 and SR are represented
by containment:

S

S0 SR

See www.entitymodelling.org/tutorialone for a description of this notation. For an example of the
modelling of recursive relationships in the definition of a phrase structure grammar of English see
www.entitymodelling.org/examplesone/englishsentence.

3 Definition of Contextual Categories

3.1 The GAT of Tree-Structured Categories

By a tree-structured category we mean (i) a category with a tree-structure defined on its objects
such that the tree of objects has a unique root object and (ii) for every A◁B in the tree of objects
a cannonical morphism pB ∶ B → A. This morphism will be distinguished in diagrams by an arrow
with a triangular head so:

B

A

pB

The theory of tree-structured categories can be presented as a generalised algebraic theory as fol-
lows:
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Symbol Introductory Rule

Ob0 Ob0 is a type

Obn+1 x∈
n
Ob ⊢ Obn+1(x) is a type

Homn,m x∈
n
Ob, y ∈

m
Ob ⊢Homn,m(x, y) is a type

○ x∈
n
Ob, y ∈

m
Ob, z∈

p
Ob, f ∈Homn,m(x, y), g ∈Homm,p(y, z) ⊢ ○(f, g) ∈Homn,p(x, z)

idn x∈
n
Ob ⊢ idn(x) ∈Homn,n(x,x)

pn x∈
n
Ob ⊢ pn(x) ∈Homn,n−1(x,xn−1)

1 1 ∈ Ob0

tn x∈
n
Ob ⊢ tn(x) ∈Homn,0(x,1)

Axioms
○(id(x), f) = f , whenever x∈

n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y)

○(f, id(y)) = f , whenever x∈
n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y)

○(○(f, g), h) = ○(f, ○(g, h)), whenever

w∈
l
Ob, x∈

n
Ob, y ∈

m
Ob, z∈

p
Ob, f ∈Homl,n(w,x), g ∈Homn,m(x, y), h ∈Homm,p(y, z)

x = y, whenever x, y ∈ Ob0

f = tn(x), whenever x∈
n
Ob, f ∈Homn,0(x,1)

For ease of reading in what follows we omit the numeric subscripts and also use an infix notation,
writing f ○ g inplace of ○(f, g); we also write px for p(x) and tx for t(x).

3.2 Contextual Categories

3.2.1 Original Definition

As defined in [1] and [2], a contextual category is defined to be a tree-structured category C with
the following additional structure:

(i) whenever

z

x y
f

pz

in C, an object f∗z such that x◁ f∗z, a morphism q(f, z) ∶ f∗z → z such that

q(f, z) ○ pz = pf∗z ○ f (q1)

i.e. such that the diagram:

f∗z z

x y

pf∗z

f

q(f, z)

pz
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commutes,
and, (ii), so that each such diagram is a pullback diagram, that is: for all objects w of C, and for
all morphisms h1 ∶ w → x and h2 ∶ w → z (see diagram 3.2.1 below) such that h1 ○ f = h2 ○ pz there
exists a unique h ∶ w → f∗z in C such that h ○ pf∗z = h1 and h ○ q(f, z) = h2, as shown here:

w

f∗z z

x y

pf∗z

f

q(f, z)

pzh1

h2

h

and so that (iii) whenever x◁ y in C,
id∗xy = y (q2)

and

q(idx, y) = idy (q3)

and (iv) whenever

z

w x y
f g

c

in C,

then

(f ○ g)∗z = f∗(g∗z) (q4)

and
q(f ○ g, z) = q(f, g∗z) ○ q(g, z) (q5)

3.2.2 Equational Definition following Voevodsky

Following Voevodsky, however, we may replace the pullback condition, (ii), above, by additional
structure as follows:
(ii’) for all morphisms f ∶ x→ y, a morphism s(f) ∶ x→ f∗p∗yy such that:

s(f) ○ pf∗p∗
y
y = idx (s1)

and

s(f) ○ q(f ○ py, y) = f (s2)

i.e. such that the following diagrams commute:
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f∗p∗yy f∗p∗yy p∗yy

x x x y

pf∗p∗
y
y

f

q(f, p∗yy)

pp∗
y
ys(f)

pf∗p∗
y
y

idx

and such that whenever

w g∗z z

x y

f

g

q(g, z)

in C then

s(f ○ q(g, z)) = s(f) (s3)

This equation is well-typed because

lhs =s(f ○ q(g, z)) ∈Hom(w, (f ○ q(g, z))∗p∗zz)

rhs =s(f) ∈Hom(w, (f ○ pg∗z)
∗g∗z)

and
Hom(w, (f ○ q(g, z))∗p∗zz) =Hom(w, (f ○ pg∗z)

∗g∗z)

because

(f ○ q(g, z))∗p∗zz = f
∗((q(g, z) ○ pz)

∗z by (q4)

= f∗(pg∗z ○ g)
∗z by (q1)

= (f ○ pg∗z)
∗g∗z by (q4)

3.2.3 Construction of pullbacks ( Voevodsky)

Lemma 3.1. If C is a tree-structured category with operators, q, * and s satisfying axioms q1-q5
and s1-s3 then for all objects w of C, and for all morphisms h1 ∶ w → x and h2 ∶ w → z such that

h1 ○f = h2 ○pz there exists a unique h ∶ w → f∗z in C such that h ○pf∗z = h1 and h ○ q(f, z) = h2.

Proof. Use the following construction of such an h as given by Voevodsky (see diagram (2):

h = s(h2) ○ q(h1, f
∗z) (1)

as shown in the following diagram:
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(g2 ○ pz)
∗z = g∗

1
f∗z

w

f∗z z

x y

(2)

pf∗z

f

q(f, z)

pz

h1

h2

s(g2)
pg∗

1
f∗z

q(g1, f
∗z)

h

As required we have

h ○ pf∗z = s(h2) ○ q(h1, f
∗z) ○ pf∗z

= s(h2) ○ ph∗
1
f∗z ○ h1 by (q1)

= s(h2) ○ p(h1○f)∗z ○ h1 by (q4)

= s(h2) ○ p(h2○pz)∗z ○ h1 since h1 ○ f = h2 ○ pz

= h1 by (s1)

and we have:

h ○ q(f, z) = s(h2) ○ q(h1, f
∗z) ○ q(f, z)

= s(h2) ○ q(h1 ○ f, z) by (q5)

= s(h2) ○ q(h2 ○ pz, z) since h1 ○ f = h2 ○ pz

= h2 ○ idw by (s2)

= h2

To show that such an h is unique assume that we also have h′ satisfying

h′ ○ pf∗z = h1 (3)

and
h′ ○ q(f, z) = h2 (4)

then

h′ = s(h′) ○ q(h′ ○ pf∗z, f
∗z) by (s2)

= s(h′ ○ q(f, z)) ○ q(h′ ○ pf∗z, f
∗z) by s3

= s(h ○ q(f, z)) ○ q(h ○ pf∗z, f
∗z) by (3) and (4)

= s(h) ○ q(h ○ pf∗z, f
∗z) by (s3)

= h by (s2)

3.3 GAT of Contextual Categories

To summarise, the GAT of Contextual Categories is defined to be the GAT of Tree-Structured
Categories plus the following additional structure:
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Symbol Introductory Rule
∗ x∈

n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y), z ∈ Obm(y) ⊢ f

∗z ∈ Obn(x)

q x∈
n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y), z ∈ Obm(y) ⊢ q(f, z) ∈Homn,m+1(f

∗ym, ym)

s x∈
n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y) ⊢ s(f) ∈Homn,n+1(x, f

∗p(y)∗y)

Axioms
q(f, z) ○ pz = pf∗z ○ f, whenever x∈

n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y), z ∈ Obm(y)

(f ○ g)∗z = f∗(g∗z), whenever w∈
n
Ob, x ∈

m
Ob, y∈

p
Ob, f ∈Homn,m(w,x), g ∈Homm,p(x, y)

q(f ○ g, z) = q(f, g∗z) ○ q(g, z), whenever w∈
n
Ob, x ∈

m
Ob, y∈

p
Ob, f ∈Homn,m(w,x), g ∈Homm,p(x, y)

s(f) ○ pf∗p∗
y
y = id(x), whenever x∈

n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y)

s(f) ○ q(f ○ py, y)) = f, whenever x∈
n
Ob, y ∈

m
Ob, f ∈Homn,m(x, y)

s(f ○ q(g, z)) = s(f), whenever w∈
n
Ob, x ∈

m
Ob, y∈

p
Ob, g ∈Homm,p(x, y), z ∈ Obp+1(y), f ∈Homn,m+1(w, g

∗z)

Before we go further we have one useful lemma:

Lemma 3.2 (lemma s4). If C is a contextual category then for all morphisms f ∶ x → y and
g ∶ y → z in C,

s(f ○ s(g)) = s(f ○ g)

Proof.

s(f ○ s(g)) = s(f ○ s(g) ○ q(g ○ pz), z)) by axiom s3

= s(f ○ g) by axiom s2

3.3.1 Extending the ∗ operator

As a preliminary to presenting an alternative axiomatisation of the generalised algbraic theory of
contextual categories we introduce two new operators. The first we consider to be an extension to
the ∗ operator and applies to certain morphisms as follows: if f ∶ xÐ→ yp, yp◁ y, and g ∶ yp Ð→ y

in a contextual category C then define f∗g ∶ xÐ→ (f ○ g ○ py)
∗y to be the morphism s(f ○ g).

Lemma 3.3. If f ∶ x Ð→ yp, yp ◁ y, and g ∶ yp Ð→ y in a contextual category C then f∗g is a
section i.e. f∗g ○ p(f○g○py)∗y = idx

Proof. This follows from the definition of ∗ and from axiom s1.

Lemma 3.4. If f ∶ xÐ→ yp and yp◁ y and g ∶ yp Ð→ y in (C) as shown here:

(f ○ g ○ py)
∗y y

x yp
f

q(f ○ g ○ py , y)

gf∗g

then
f∗g ○ q(f ○ g ○ py, y) = f ○ g

Proof. Follows directly from the definition of ∗ and by axiom s2.

8



Lemma 3.5. if f1 ∶ x1 Ð→ x2 and f1 ∶ x2 Ð→ yp and yp ◁ y and g ∶ yp Ð→ y in a contextual
category C as here:

y

x1 x2 yp
f1 f2

g

then
f∗
1
f∗
2
g = (f1 ○ f2)

∗g

Proof.

lhs = s(f1 ○ f2 ○ g) from defn. of extended ∗

= s(f1 ○ s(f2 ○ g)) by lemma 3.2

= f∗
1
f∗
2
g from defn. of extended ∗

= rhs as required.

3.3.2 Definition of δ

If x is an object of a contextual category C then define δx ∶ xÐ→ p∗xx to be the morphism s(idx).

Lemma 3.6. If x is an object of a contextual category C then δx satisfies:

(i) δx is a section i.e δx ○ px = idx.

(ii) δx ○ q(px, x) = idx.

Proof. Follows from definition of δ and from axioms s1 and axiom s3.

Lemma 3.7. Whenever yp◁ y and f ∶ xÐ→ yp in a contextual category C then

q(f, y)∗δy = deltaf∗y

Proof. Use lemma 3.2 and axiom s3.

3.4 δ∗ axiomatisation.

We can now give an alternative axiomatision of the generalised algebraic theory of contextual
categories which we provisionally call a δ∗-structure.

3.4.1 Definition

A δ∗-structure is a tree category (C) with operators ∗ and q satisfying axioms q1 - q5 given above
and with the following additional structure:

I. If f ∶ x Ð→ yp and yp ◁ y and g ∶ yp Ð→ y in (C) then a morphism f∗g ∶ x Ð→ (f ○ g ○ py) ∗ y
as shown here:

(f ○ g ○ py)
∗y y

x yp
f

q(f ○ g ○ py , y)

gf∗g
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satisfying
f∗g ○ p(f○g○py)∗y = idx (star1)

and
f∗g ○ q(f ○ g ○ py, y) = f ○ g (star2)

and such that if f1 ∶ x1 Ð→ x2 and f1 ∶ x2 Ð→ yp and yp◁ y and g ∶ yp Ð→ y in (C) as here:

y

x1 x2 yp
f1 f2

g

then
f∗
1
f∗
2
g = (f1 ○ f2)

∗g (star3)

II. For any object x of (C) a morphism δx ∶ xÐ→ p∗xx such that δx is a section i.e :

δx ○ px = idx (delta1)

and
δx ○ q(px, x) = idx (delta2)

and whenever yp◁ y, f ∶ xÐ→ yp in C as here:

pf∗y
∗f∗y p∗yy

f∗y y

x yp
f

q(f, y)

q(q(f, y), p∗yy)

δy
δf∗y

then
q(f, y)∗δy = deltaf∗y (delta3)

3.4.2 Recovery of s from ∗ and delta

That a contextual category has δ∗-structure we have shown in lemmas 3.4, 3.5, 3.6 and 3.7. It
remains to show that within any δ∗-structure an operator s can be defined and satisfies axioms
s1,s2 and s3. Define s(f) to be f∗δy . That axiom s1 holds follows from axiom star1. We prove
axiom s2, which is:

s(f) ○ q(f ○ py, y) = f,
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as follows:

lhs = f∗δy ○ q(f ○ py, y) from defn of s

= f∗δy ○ q(f, p
∗
yy) ○ q(py, y) by q5

= f ○ δy ○ q(py, y) from star2

= f ○ idy by delta2

= rhs as required.

Finally we prove axiom s3, which is

s(f ○ q(g, z)) = s(f),

as follows:

lhs = (f ○ q(g, z))∗δz from defn of s

= f∗(q(g, z)∗δz) by star3

= f∗δg∗z from delta3

= rhs as required.
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